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Praise for the First Edition of TCP/IP lllustrated, Volume 1: The Protocols

“This is sure to be the bible for TCP/IP developers and users. Within minutes of picking
up the text, I encountered several scenarios that had tripped up both my colleagues and
myself in the past. Stevens reveals many of the mysteries once held tightly by the ever-
elusive networking gurus. Having been involved in the implementation of TCP/IP for
some years now, I consider this by far the finest text to date.”

—Robert A. Ciampa, network engineer, Synernetics, division of 3COM

“While all of Stevens’ books are readable and technically excellent, this new opus is awe-
some. Although many books describe the TCP/IP protocols, Stevens provides a level of
depth and real-world detail lacking from the competition. He puts the reader inside
TCP/IP using a visual approach and shows the protocols in action.”

—Steven Baker, networking columnist, Unix Review

“TCP/IP Illustrated, Volume 1, is an excellent reference for developers, network admin-
istrators, or anyone who needs to understand TCP/IP technology. TCP/IP Illustrated is
comprehensive in its coverage of TCP/IP topics, providing enough details to satisfy the
experts while giving enough background and commentary for the novice.”

—Bob Williams, vice president, Marketing, NetManage, Inc.

“... [T]he difference is that Stevens wants to show as well as tell about the protocols.
His principal teaching tools are straightforward explanations, exercises at the ends of
chapters, byte-by-byte diagrams of headers and the like, and listings of actual traffic as
examples.”

—Walter Zintz, UnixWorld

“Much better than theory only. . . . W. Richard Stevens takes a multihost-based configu-
ration and uses it as a travelogue of TCP/IP examples with illustrations. TCP/IP Illus-
trated, Volume 1, is based on practical examples that reinforce the theory—distinguishing
this book from others on the subject, and making it both readable and informative.”

—Peter M. Haverlock, consultant, IBM TCP/IP Development

“The diagrams he uses are excellent and his writing style is clear and readable. In sum,
Stevens has made a complex topic easy to understand. This book merits everyone’s atten-
tion. Please read it and keep it on your bookshelf.”

—Elizabeth Zinkann, sys admin

“W. Richard Stevens has produced a fine text and reference work. It is well organized
and very clearly written with, as the title suggests, many excellent illustrations expos-
ing the intimate details of the logic and operation of IP, TCP, and the supporting cast of
protocols and applications.”

—Scott Bradner, consultant, Harvard University OIT/NSD
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Foreword

Rarely does one find a book on a well-known topic that is both historically and
technically comprehensive and remarkably accurate. One of the things I admire
about this work is the “warts and all” approach that gives it such credibility. The
TCP/IP architecture is a product of the time in which it was conceived. That it has
been able to adapt to growing requirements in many dimensions by factors of a
million or more, to say nothing of a plethora of applications, is quite remarkable.
Understanding the scope and limitations of the architecture and its protocols is a
sound basis from which to think about future evolution and even revolution.

During the early formulation of the Internet architecture, the notion of “enter-
prise” was not really recognized. In consequence, most networks had their own
IP address space and “announced” their addresses in the routing system directly.
After the introduction of commercial service, Internet Service Providers emerged
as intermediaries who “announced” Internet address blocks on behalf of their cus-
tomers. Thus, most of the address space was assigned in a “provider dependent”
fashion. “Provider independent” addressing was unusual. The net result (no pun
intended) led to route aggregation and containment of the size of the global rout-
ing table. While this tactic had benefits, it also created the “multi-homing” prob-
lem since users of provider-dependent addresses did not have their own entries
in the global routing table. The IP address “crunch” also led to Network Address
Translation, which also did not solve provider dependence and multi-homing
problems.

Reading through this book evokes a sense of wonder at the complexity that
has evolved from a set of relatively simple concepts that worked with a small num-
ber of networks and application circumstances. As the chapters unfold, one can
see the level of complexity that has evolved to accommodate an increasing number
of requirements, dictated in part by new deployment conditions and challenges, to
say nothing of sheer growth in the scale of the system.

The issues associated with securing “enterprise” users of the Internet also led
to firewalls that are intended to supply perimeter security. While useful, it has
become clear that attacks against local Internet infrastructure can come through
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internal compromises (e.g., an infected computer is put onto an internal network
or an infected thumb-drive is used to infect an internal computer through its USB
port).

It has become apparent that, in addition to a need to expand the Internet
address space through the introduction of IP version 6, with its 340 trillion tril-
lion trillion addresses, there is also a strong need to introduce various security-
enhancing mechanisms such as the Domain Name System Security Extension
(DNSSEC) among many others.

What makes this book unique, in my estimation, is the level of detail and atten-
tion to history. It provides background and a sense for the ways in which solutions
to networking problems have evolved. It is relentless in its effort to achieve preci-
sion and to expose remaining problem areas. For an engineer determined to refine
and secure Internet operation or to explore alternative solutions to persistent prob-
lems, the insights provided by this book will be invaluable. The authors deserve
credit for a thorough rendering of the technology of today’s Internet.

Woodhurst Vint Cerf
June 2011



Preface to the Second Edition

Welcome to the second edition of TCP/IP Illustrated, Volume 1. This book aims
to provide a detailed, current look at the TCP/IP protocol suite. Instead of just
describing how the protocols operate, we show the protocols in operation using
a variety of analysis tools. This helps you better understand the design decisions
behind the protocols and how they interact with each other, and it simultaneously
exposes you to implementation details without your having to read through the
implementation’s software source code or set up an experimental laboratory. Of
course, reading source code or setting up a laboratory will only help to increase
your understanding.

Networking has changed dramatically in the past three decades. Originally a
research project and object of curiosity, the Internet has become a global commu-
nication fabric upon which governments, businesses, and individuals depend. The
TCP/IP suite defines the underlying methods used to exchange information by
every device on the Internet. After more than a decade of delay, the Internet and
TCP/IP itself are now undergoing an evolution, to incorporate IPv6. Throughout
the text we will discuss both IPv6 and the current IPv4 together, but we high-
light the differences where they are important. Unfortunately, they do not directly
interoperate, so some care and attention are required to appreciate the impact of
the evolution.

The book is intended for anyone wishing to better understand the current set
of TCP/IP protocols and how they operate: network operators and administrators,
network software developers, students, and users who deal with TCP/IP. We have
included material that should be of interest to both new readers as well as those
familiar with the material from the first edition. We hope you will find the cover-
age of the new and older material useful and interesting,.

Comments on the First Edition

Nearly two decades have passed since the publication of the first edition of TCP/IP
Hlustrated, Volume 1. Tt continues to be a valuable resource for both students and
professionals in understanding the TCP/IP protocols at a level of detail difficult to

xxvii



xxviii

Preface to the Second Edition

obtain in competing texts. Today it remains among the best references for detailed
information regarding the operation of the TCP/IP protocols. However, even the
best books concerned with information and communications technology become
dated after a time, and the TCP/IP Illustrated series is no exception. In this edition,
I hope to thoroughly update the pioneering work of Dr. Stevens with coverage of
new material while maintaining the exceptionally high standard of presentation
and detail common to his numerous books.

The first edition covers a broad set of protocols and their operation, ranging
from the link layer all the way to applications and network management. Today,
covering this breadth of material comprehensively in a single volume would
produce a very lengthy text indeed. For this reason, the second edition focuses
specifically on the core protocols: those relatively low-level protocols used most
frequently in providing the basic services of configuration, naming, data delivery,
and security for the Internet. Detailed discussions of applications, routing, Web
services, and other important topics are postponed to subsequent volumes.

Considerable progress has been made in improving the robustness and com-
pliance of TCP/IP implementations to their corresponding specifications since the
publication of the first edition. While many of the examples in the first edition
highlight implementation bugs or noncompliant behaviors, these problems have
largely been addressed in currently available systems, at least for IPv4. This fact
is not terribly surprising, given the greatly expanded use of the TCP/IP protocols
in the last 18 years. Misbehaving implementations are a comparative rarity, which
attests to a certain maturity of the protocol suite as a whole. The problems encoun-
tered in the operation of the core protocols nowadays often relate to intentional
exploitation of infrequently used protocol features, a form of security concern that
was not a primary focus in the first edition but one that we spend considerable
effort to address in the second edition.

The Internet Milieu of the Twenty-first Century

The usage patterns and importance of the Internet have changed considerably
since the publication of the first edition. The most obvious watershed event was
the creation and subsequent intense commercialization of the World Wide Web
starting in the early 1990s. This event greatly accelerated the availability of the
Internet to large numbers of people with various (sometimes conflicting) motiva-
tions. As such, the protocols and systems originally implemented in a small-scale
environment of academic cooperation have been stressed by limited availability of
addresses and an increase of security concerns.

In response to the security threats, network and security administrators have
introduced special control elements into the network. It is now common practice to
place a firewall at the point of attachment to the Internet, for both large enterprises
as well as small businesses and homes. As the demand for IP addresses and secu-
rity has increased over the last decade, Network Address Translation (NAT) is now
supported in virtually all current-generation routers and is in widespread use. It
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has eased the pressure on Internet address availability by allowing sites to obtain
a comparatively small number of routable Internet addresses from their service
providers (one for each simultaneously online user), yet assign a very large num-
ber of addresses to local computers without further coordination. A consequence
of NAT deployment has been a slowing of the migration to IPv6 (which provides
for an almost incomprehensibly large number of addresses) and interoperability
problems with some older protocols.

As the users of personal computers began to demand Internet connectivity
by the mid-1990s, the largest supplier of PC software, Microsoft, abandoned its
original policy of offering only proprietary alternatives to the Internet and instead
undertook an effort to embrace TCP/IP compatibility in most of its products.
Since then, personal computers running their Windows operating system have
come to dominate the mix of PCs presently connected to the Internet. Over time,
a significant rise in the number of Linux-based systems means that such systems
now threaten to displace Microsoft as the frontrunner. Other operating systems,
including Oracle Solaris and Berkeley’s BSD-based systems, which once repre-
sented the majority of Internet-connected systems, are now a comparatively small
component of the mix. Apple’s OS X (Mach-based) operating system has risen as
a new contender and is gaining in popularity, especially among portable com-
puter users. In 2003, portable computer (laptop) sales exceeded desktop sales as
the majority of personal computer types sold, and their proliferation has sparked
a demand for widely deployed, high-speed Internet access supported by wire-
less infrastructure. It is projected that the most common method for accessing the
Internet from 2012 and beyond will be smartphones. Tablet computers also repre-
sent an important growing contender.

Wireless networks are now available at a large number of locations such as
restaurants, airports, coffeehouses, and other public places. They typically pro-
vide short-range free or pay-for-use (flat-rate) high-speed wireless Internet con-
nections using hardware compatible with commonly used office or home local
area network installations. A set of alternative “wireless broadband” technolo-
gies based on cellular telephone standards (e.g., LTE, HSPA, UMTS, EV-DO) are
becoming widely available in developed regions of the world (and some develop-
ing regions of the words that are “leapfrogging” to newer wireless technology),
offering longer-range operation, often at somewhat reduced bandwidths and with
volume-based pricing. Both types of infrastructure address the desire of users to
be mobile while accessing the Internet, using either portable computers or smaller
devices. In either case, mobile end users accessing the Internet over wireless net-
works pose two significant technical challenges to the TCP/IP protocol archi-
tecture. First, mobility affects the Internet’s routing and addressing structure by
breaking the assumption that hosts have addresses assigned to them based upon
the identity of their nearby router. Second, wireless links may experience outages
and therefore cause data to be lost for reasons other than those typical of wired
links (which generally do not lose data unless too much traffic is being injected
into the network).
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Finally, the Internet has fostered the rise of so-called peer-to-peer applica-
tions forming “overlay” networks. Peer-to-peer applications do not rely on a cen-
tral server to accomplish a task but instead determine a set of peer computers with
which they can communicate and interact to accomplish a task. The peer computers
are operated by other end users and may come and go rapidly compared to a fixed
server infrastructure. The “overlay” concept captures the fact that such interact-
ing peers themselves form a network, overlaid atop the conventional TCP/IP-based
network (which, one may observe, is itself an overlay above the underlying physi-
cal links). The development of peer-to-peer applications, while of intense interest
to those who study traffic flows and electronic commerce, has not had a profound
impact on the core protocols described in Volume 1 per se, but the concept of overlay
networks has become an important consideration for networking technology more
generally.

Content Changes for the Second Edition

Regarding content in the text, the most important changes from the first edition
are a restructuring of the scope of the overall text and the addition of significant
material on security. Instead of attempting to cover nearly all common protocols
in use at every layer in the Internet, the present text focuses in detail first on the
non-security core protocols in widespread use, or that are expected to be in wide-
spread use in the near future: Ethernet (802.3), Wi-Fi (802.11), PPP, ARP, IPv4, IPv6,
UDP, TCP, DHCP, and DNS. These protocols are likely to be encountered by sys-
tem administrators and users alike.

In the second edition, security is covered in two ways. First, in each appropriate
chapter, a section devoted to describing known attacks and their countermeasures
relating to the protocol described in the chapter is included. These descriptions
are not presented as a recipe for constructing attacks but rather as a practical indi-
cation of the kinds of problems that may arise when protocol implementations (or
specifications, in some cases) are insufficiently robust. In today’s Internet, incom-
plete specification or lax implementation practice can lead to mission-critical sys-
tems being compromised by even relatively unsophisticated attacks.

The second important discussion of security occurs in Chapter 18, where
security and cryptography are studied in some detail, including protocols such as
IPsec, TLS, DNSSEC, and DKIM. These protocols are now understood to be impor-
tant for implementing any service or application expected to maintain integrity
or secure operation. As the Internet has increased in commercial importance, the
need for security (and the number of threats to it) has grown proportionally.

Although IPv6 was not included in the first edition, there is now reason to
believe that the use of IPv6 may increase significantly with the exhaustion of
unallocated IPv4 address groups in February 2011. IPv6 was conceived largely
to address the problems of IPv4 address depletion and, and while not nearly as
common as IPv4 today, is becoming more important as a growing number of
small devices (such as cellular telephones, household devices, and environmental
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sensors) become attached to the Internet. Events such as the World IPv6 Day (June
8, 2011) helped to demonstrate that the Internet can continue to work even as the
underlying protocols are modified and augmented in a significant way.

A second consideration for the structure of the second edition is a deemphasis
of the protocols that are no longer commonly used and an update of the descrip-
tions of those that have been revised substantially since the publication of the
first edition. The chapters covering RARP, BOOTP, NFS, SMTP, and SNMP have
been removed from the book, and the discussion of the SLIP protocol has been
abandoned in favor of expanded coverage of DHCP and PPP (including PPPoE).
The function of IP forwarding (described in Chapter 9 in the first edition) has
been integrated with the overall description of the IPv4 and IPv6 protocols in
Chapter 5 of this edition. The discussion of dynamic routing protocols (RIP, OSPF,
and BGP) has been removed, as the latter two protocols alone could each conceiv-
ably merit a book-long discussion. Starting with ICMP, and continuing through IP,
TCP, and UDP, the impact of operation using IPv4 versus IPv6 is discussed in any
cases where the difference in operation is significant. There is no specific chapter
devoted solely to IPv6; instead, its impact relative to each existing core protocol is
described where appropriate. Chapters 15 and 25-30 of the first edition, which are
devoted to Internet applications and their supporting protocols, have been largely
removed; what remains only illustrates the operation of the underlying core pro-
tocols where necessary.

Several chapters covering new material have been added. The first chapter
begins with a general introduction to networking issues and architecture, followed
by a more Internet-specific orientation. The Internet’s addressing architecture is
covered in Chapter 2. A new chapter on host configuration and how a system “gets
on” the network appears as Chapter 6. Chapter 7 describes firewalls and Network
Address Translation (NAT), including how NATs are used in partitioning address
space between routable and nonroutable portions. The set of tools used in the first
edition has been expanded to include Wireshark (a free network traffic monitor
application with a graphical user interface).

The target readership for the second edition remains identical to that of the
first edition. No prior knowledge of networking concepts is required for approach-
ing it, although the advanced reader should benefit from the level of detail and
references. A rich collection of references is included in each chapter for the inter-
ested reader to pursue.

Editorial Changes for the Second Edition

The general flow of material in the second edition remains similar to that of the
first edition. After the introductory material (Chapters 1 and 2), the protocols are
presented in a bottom-up fashion to illustrate how the goal of network communi-
cation presented in the introduction is realized in the Internet architecture. As in
the first edition, actual packet traces are used to illustrate the operational details
of the protocols, where appropriate. Since the publication of the first edition, freely
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available packet capture and analysis tools with graphical interfaces have become
available, extending the capabilities of the tcpdump program used in the first
edition. In the present text, tcpdump is used when the points to be illustrated
are easily conveyed by examining the output of a text-based packet capture tool.
In most other cases, however, screen shots of the Wireshark tool are used. Please
be aware that some output listings, including snapshots of tcpdump output, are
wrapped or simplified for clarity.

The packet traces shown typically illustrate the behavior of one or more parts
of the network depicted on the inside of the front book cover. It represents a broad-
band-connected “home” environment (typically used for client access or peer-to-
peer networking), a “public” environment (e.g., coffee shop), and an enterprise
environment. The operating systems used for examples include Linux, Windows,
FreeBSD, and Mac OS X. Various versions are used, as many different OS versions
are in use on the Internet today.

The structure of each chapter has been slightly modified from the first edi-
tion. Each chapter begins with an introduction to the chapter topic, followed in
some cases by historical notes, the details of the chapter, a summary, and a set of
references. A section near the end of most chapters describes security concerns
and attacks. The per-chapter references represent a change for the second edition.
They should make each chapter more self-contained and require the reader to
perform fewer “long-distance page jumps” to find a reference. Some of the refer-
ences are now enhanced with WWW URLs for easier access online. In addition,
the reference format for papers and books has been changed to a somewhat more
compact form that includes the first initial of each author’s last name followed by
the last two digits of the year (e.g., the former [Cerf and Kahn 1974] is now short-
ened to [CK74]). For the numerous RFC references used, the RFC number is used
instead of the author names. This follows typical RFC conventions and has the
side benefit of grouping all the RFC references together in the reference lists.

On a final note, the typographical conventions of the TCP/IP Illustrated series
have been maintained faithfully. However, the present author elected to use an
editor and typesetting package other than the Troff system used by Dr. Stevens
and some other authors of the Addison-Wesley Professional Computing Series col-
lection. Thus, the particular task of final copyediting could take advantage of the
significant expertise of Barbara Wood, the copy editor generously made available
to me by the publisher. We hope you will be pleased with the results.

Berkeley, California Kevin R. Fall
September 2011
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Introduction

This book describes the TCP/IP protocol suite, but from a different perspective
than other texts on TCP/IP. Instead of just describing the protocols and what they
do, we’ll use a popular diagnostic tool to watch the protocols in action. Seeing how
the protocols operate in varying circumstances provides a greater understanding
of how they work and why certain design decisions were made. It also provides
a look into the implementation of the protocols, without having to wade through
thousands of lines of source code.

When networking protocols were being developed in the 1960s through
the 1980s, expensive, dedicated hardware was required to see the packets going
“across the wire.” Extreme familiarity with the protocols was also required to
comprehend the packets displayed by the hardware. Functionality of the hard-
ware analyzers was limited to that built in by the hardware designers.

Today this has changed dramatically with the ability of the ubiquitous work-
station to monitor a local area network [Mogul 1990]. Just attach a workstation to
your network, run some publicly available software, and watch what goes by on
the wire. While many people consider this a tool to be used for diagnosing network
problems, it is also a powerful tool for understanding how the network protocols
operate, which is the goal of this book.

This book is intended for anyone wishing to understand how the TCP/IP pro-
tocols operate: programmers writing network applications, system administrators
responsible for maintaining computer systems and networks utilizing TCP/IP,
and users who deal with TCP/IP applications on a daily basis.
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Typographical Conventions

When we display interactive input and output we’ll show our typed input in a
bold font, and the computer output 1ike this. Comments are added in italics.

bsdi % telnet svr4 discard connect to the discard server
Trying 140.252.13.34... this line and next output by Telnet client
Connected to svr4.

Also, we always include the name of the system as part of the shell prompt (bsdi
in this example) to show on which host the command was run.

Note

Throughout the text we’ll use indented, parenthetical notes such as this to
describe historical points or implementation details.

We sometimes refer to the complete description of a command on the Unix man-
ual as in ifconfig(8). This notation, the name of the command followed by a
number in parentheses, is the normal way of referring to Unix commands. The
number in parentheses is the section number in the Unix manual of the “manual
page” for the command, where additional information can be located. Unfortu-
nately not all Unix systems organize their manuals the same, with regard to the
section numbers used for various groupings of commands. We’ll use the BSD-
style section numbers (which is the same for BSD-derived systems such as SunOS
4.1.3), but your manuals may be organized differently.
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Introduction

Effective communication depends on the use of a common language. This is true
for humans and other animals as well as for computers. When a set of common
behaviors is used with a common language, a protocol is being used. The first defi-
nition of a protocol, according to the New Oxford American Dictionary, is

The official procedure or system of rules governing affairs of state or diplomatic
occasions.

We engage in many protocols every day: asking and responding to questions,
negotiating business transactions, working collaboratively, and so on. Computers
also engage in a variety of protocols. A collection of related protocols is called a
protocol suite. The design that specifies how various protocols of a protocol suite
relate to each other and divide up tasks to be accomplished is called the architec-
ture or reference model for the protocol suite. TCP/IP is a protocol suite that imple-
ments the Internet architecture and draws its origins from the ARPANET Reference
Model (ARM) [RFC0871]. The ARM was itself influenced by early work on packet
switching in the United States by Paul Baran [B64] and Leonard Kleinrock [K64],
in the UK. by Donald Davies [DBSW66], and in France by Louis Pouzin [P73].
Other protocol architectures have been specified over the years (e.g., the ISO pro-
tocol architecture [Z80], Xerox’s XNS [X85], and IBM’s SNA [196]), but TCP/IP has
become the most popular. There are several interesting books that focus on the
history of computer communications and the development of the Internet, such as
[PO7] and [WO02].

It is worth mentioning that the TCP/IP architecture evolved from work that
addressed a need to provide interconnection of multiple different packet-switched
computer networks [CK74]. This was accomplished using a set of gateways (later
called routers) that provided a translation function between each otherwise incom-
patible network. The resulting “concatenated” network or catenet (later called inter-
network) would be much more useful, as many more nodes offering a wide variety
of services could communicate. The types of uses that a global network might
offer were envisioned years before the protocol architecture was fully developed.
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In 1968, for example, J. C. R. Licklider and Bob Taylor foresaw the potential uses
for a global interconnected communication network to support “supercommuni-
ties” [LT68]:

Today the on-line communities are separated from one another functionally as
well as geographically. Each member can look only to the processing, storage and
software capability of the facility upon which his community is centered. But
now the move is on to interconnect the separate communities and thereby trans-
form them into, let us call it, a supercommunity. The hope is that interconnection
will make available to all members of all the communities the programs and data
resources of the entire supercommunity . . . The whole will constitute a labile net-
work of networks—ever-changing in both content and configuration.

Thus, it is apparent that the global network concept underpinning the ARPA-
NET and later the Internet was designed to support many of the types of uses we
enjoy today. However, getting to this point was neither simple nor obvious. The
success resulted from paying careful attention to design and engineering, innova-
tive users and developers, and the availability of sufficient resources to move from
concept to prototype and, eventually, to commercial networking products.

This chapter provides an overview of the Internet architecture and TCP/IP
protocol suite, to provide some historical context and to establish an adequate
background for the remaining chapters. Architectures (both protocol and physi-
cal) really amount to a set of design decisions about what features should be sup-
ported and where such features should be logically implemented. Designing an
architecture is more art than science, yet we shall discuss some characteristics of
architectures that have been deemed desirable over time. The subject of network
architecture has been undertaken more broadly in the text by Day [D08], one of
few such treatments.

Architectural Principles

The TCP/IP protocol suite allows computers, smartphones, and embedded devices
of all sizes, supplied from many different computer vendors and running totally
different software, to communicate with each other. By the turn of the twenty-first
century it has become a necessity for modern communication, entertainment, and
commerce. It is truly an open system in that the definition of the protocol suite and
many of its implementations are publicly available at little or no charge. It forms
the basis for what is called the global Internet, or the Internet, a wide area network
(WAN) of about two billion users that literally spans the globe (as of 2010, about
30% of the world’s population). Although many people consider the Internet and
the World Wide Web (WWW) to be interchangeable terms, we ordinarily refer to
the Internet in terms of its ability to provide basic communication of messages
between computers. We refer to WWW as an application that uses the Internet for
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communication. It is perhaps the most important Internet application that brought
Internet technology to world attention in the early 1990s.

Several goals guided the creation of the Internet architecture. In [C88], Clark
recounts that the primary goal was to “develop an effective technique for mul-
tiplexed utilization of existing interconnected networks.” The essence of this
statement is that the Internet architecture should be able to interconnect multiple
distinct networks and that multiple activities should be able to run simultane-
ously on the resulting interconnected network. Beyond this primary goal, Clark
provides a list of the following second-level goals:

¢ Internetcommunication must continue despite loss of networks or gateways.
¢ The Internet must support multiple types of communication services.
¢ The Internet architecture must accommodate a variety of networks.

* The Internet architecture must permit distributed management of its
resources.

¢ The Internet architecture must be cost-effective.

¢ The Internet architecture must permit host attachment with a low level of
effort.

¢ The resources used in the Internet architecture must be accountable.

Many of the goals listed could have been supported with somewhat different
design decisions from those ultimately selected. However, a few design options
were gaining momentum when these architectural principles were being formu-
lated that influenced the designers in the particular choices they made. We will
mention some of the more important ones and their consequences.

Packets, Connections, and Datagrams

Up to the 1960s, the concept of a network was based largely on the telephone net-
work. It was developed to connect telephones to each other for the duration of a
call. A call was normally implemented by establishing a connection from one party
to another. Establishing a connection meant that a circuit (initially, a physical elec-
trical circuit) was made between one telephone and another for the duration of a
call. When the call was complete, the connection was cleared, allowing the circuit
to be used by other users’ calls. The call duration and identification of the connec-
tion endpoints were used to perform billing of the users. When established, the
connection provided each user a certain amount of bandwidth or capacity to send
information (usually voice sounds). The telephone network progressed from its
analog roots to digital, which greatly improved its reliability and performance.
Data inserted into one end of a circuit follows some preestablished path through
the network switches and emerges on the other side in a predictable fashion,
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usually with some upper bound on the time (latency). This gives predictable ser-
vice, as long as a circuit is available when a user needs one. Circuits allocate a
pathway through the network that is reserved for the duration of a call, even if
they are not entirely busy. This is a common experience today with the phone
network—as long as a call is taking place, even if we are not saying anything, we
are being charged for the time.

One of the important concepts developed in the 1960s (e.g., in [B64]) was the
idea of packet switching. In packet switching, “chunks” (packets) of digital informa-
tion comprising some number of bytes are carried through the network somewhat
independently. Chunks coming from different sources or senders can be mixed
together and pulled apart later, which is called multiplexing. The chunks can be
moved around from one switch to another on their way to a destination, and
the path might be subject to change. This has two potential advantages: the net-
work can be more resilient (the designers were worried about the network being
physically attacked), and there can be better utilization of the network links and
switches because of statistical multiplexing.

When packets are received at a packet switch, they are ordinarily stored in buf-
fer memory or queue and processed in a first-come-first-served (FCFS) fashion. This
is the simplest method for scheduling the way packets are processed and is also
called first-in-first-out (FIFO). FIFO buffer management and on-demand schedul-
ing are easily combined to implement statistical multiplexing, which is the pri-
mary method used to intermix traffic from different sources on the Internet. In
statistical multiplexing, traffic is mixed together based on the arrival statistics or
timing pattern of the traffic. Such multiplexing is simple and efficient, because if
there is any network capacity to be used and traffic to use it, the network will be
busy (high utilization) at every bottleneck or choke point. The downside of this
approach is limited predictability—the performance seen by any particular appli-
cation depends on the statistics of other applications that are sharing the network.
Statistical multiplexing is like a highway where the cars can change lanes and
ultimately intersperse in such a way that any point of constriction is as busy as it
can be.

Alternative techniques, such as time-division multiplexing (TDM) and static mul-
tiplexing, typically reserve a certain amount of time or other resources for data on
each connection. Although such techniques can lead to more predictability, a fea-
ture useful for supporting constant bit rate telephone calls, they may not fully uti-
lize the network capacity because reserved bandwidth may go unused. Note that
while circuits are straightforwardly implemented using TDM techniques, virtual
circuits (VCs) that exhibit many of the behaviors of circuits but do not depend on
physical circuit switches can be implemented atop connection-oriented packets.
This is the basis for a protocol known as X.25 that was popular until about the
early 1990s when it was largely replaced with Frame Relay and ultimately digital
subscriber line (DSL) technology and cable modems supporting Internet connectiv-
ity (see Chapter 3).
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The VC abstraction and connection-oriented packet networks such as X.25
required some information or state to be stored in each switch for each connec-
tion. The reason is that each packet carries only a small bit of overhead informa-
tion that provides an index into a state table. For example, in X.25 the 12-bit logical
channel identifier (LCI) or logical channel number (LCN) serves this purpose. At each
switch, the LCI or LCN is used in conjunction with the per-flow state in each switch
to determine the next switch along the path for the packet. The per-flow state is
established prior to the exchange of data on a VC using a signaling protocol that
supports connection establishment, clearing, and status information. Such net-
works are consequently called connection-oriented.

Connection-oriented networks, whether built on circuits or packets, were the
most prevalent form of networking for many years. In the late 1960s, another option
was developed known as the datagram. Attributed in origin to the CYCLADES
[P73] system, a datagram is a special type of packet in which all the identify-
ing information of the source and final destination resides inside the packet itself
(instead of in the packet switches). Although this tends to require larger packets,
per-connection state at packet switches is no longer required and a connectionless
network could be built, eliminating the need for a (complicated) signaling proto-
col. Datagrams were eagerly embraced by the designers of the early Internet, and
this decision had profound implications for the rest of the protocol suite.

One other related concept is that of message boundaries or record markers. As
shown in Figure 1-1, when an application sends more than one chunk of infor-
mation into the network, the fact that more than one chunk was written may or

Application Writes to Application Reads from
Network Network
Protocol That
‘ w2 ‘ ‘ W1 bytes — Preserves Message —» ‘ w2 H W1 bytes ‘
N y Boundaries N y
4 4
Application invokes Application “read”
“write” function 3 times functions return same
with sizes W1, W2, W3 size as corresponding
/\ writes (W1, W2, W3)
s Protocol That Does Not
[wa] [ w2 [[  wi — Preserve Message — [rR[rR[R] [R]R]R]
Boundaries N Y,
~

Application “read” functions return
however much application requests
(e.g., 6 reads, R bytes each)

Figure 1-1 Applications write messages that are carried in protocols. A message boundary is the position or
byte offset between one write and another. Protocols that preserve message boundaries indicate
the position of the sender’s message boundaries at the receiver. Protocols that do not preserve
message boundaries (e.g., streaming protocols like TCP) ignore this information and do not make
it available to a receiver. As a result, applications may need to implement their own methods to
indicate a sender’s message boundaries if this capability is required.



Introduction

1.1.2

may not be preserved by the communication protocol. Most datagram protocols
preserve message boundaries. This is natural because the datagram itself has a
beginning and an end. However, in a circuit or VC network, it is possible that an
application may write several chunks of data, all of which are read together as one
or more different-size chunks by a receiving application. These types of protocols
do not preserve message boundaries. In cases where an underlying protocol fails
to preserve message boundaries but they are needed by an application, the appli-
cation must provide its own.

The End-to-End Argument and Fate Sharing

When large systems such as an operating system or protocol suite are being
designed, a question often arises as to where a particular feature or function
should be placed. One of the most important principles that influenced the design
of the TCP/IP suite is called the end-to-end argument [SRC84]:

The function in question can completely and correctly be implemented only with
the knowledge and help of the application standing at the end points of the com-
munication system. Therefore, providing that questioned function as a feature of
the communication itself is not possible. (Sometimes an incomplete version of the
function provided by the communication system may be useful as a performance
enhancement.)

This argument may seem fairly straightforward upon first reading but can
have profound implications for communication system design. It argues that cor-
rectness and completeness can be achieved only by involving the application or
ultimate user of the communication system. Efforts to correctly implement what
the application is “likely” to need are doomed to incompleteness. In short, this
principle argues that important functions (e.g., error control, encryption, delivery
acknowledgment) should usually not be implemented at low levels (or layers; see
Section 1.2.1) of large systems. However, low levels may provide capabilities that
make the job of the endpoints somewhat easier and consequently may improve
performance. A nuanced reading reveals that this argument suggests that low-
level functions should not aim for perfection because a perfect guess at what the
application may require is unlikely to be possible.

The end-to-end argument tends to support a design with a “dumb” network
and “smart” systems connected to the network. This is what we see in the TCP/IP
design, where many functions (e.g., methods to ensure that data is not lost, con-
trolling the rate at which a sender sends) are implemented in the end hosts where
the applications reside. The selection of which functions are implemented together
in the same computer or network or software stack is the subject of another related
principle known as fate sharing [C88].

Fate sharing suggests placing all the necessary state to maintain an active
communication association (e.g., virtual connection) at the same location with
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the communicating endpoints. With this reasoning, the only type of failure that
destroys communication is one that also destroys one or more of the endpoints,
which obviously destroys the overall communication anyhow. Fate sharing is one
of the design philosophies that allows virtual connections (e.g., those implemented
by TCP) to remain active even if connectivity within the network has failed for a
(modest) period of time. Fate sharing also supports a “dumb network with smart
end hosts” model, and one of the ongoing tensions in today’s Internet is what
functions reside in the network and what functions do not.

Error Control and Flow Control

There are some circumstances where data within a network gets damaged or lost.
This can be for a variety of reasons such as hardware problems, radiation that
modifies bits while being transmitted, being out of range in a wireless network,
and other factors. Dealing with such errors is called error control, and it can be
implemented in the systems constituting the network infrastructure, or in the sys-
tems that attach to the network, or some combination. Naturally, the end-to-end
argument and fate sharing would suggest that error control be implemented close
to or within applications.

Usually, if a small number of bit errors are of concern, a number of mathemati-
cal codes can be used to detect and repair the bit errors when data is received or
while it is in transit [LC04]. This task is routinely performed within the network.
When more severe damage occurs in a packet network, entire packets are usu-
ally resent or retransmitted. In circuit-switched or VC-switched networks such as
X.25, retransmission tends to be done inside the network. This may work well for
applications that require strict in-order, error-free delivery of their data, but some
applications do not require this capability and do not wish to pay the costs (such
as connection establishment and potential retransmission delays) to have their
data reliably delivered. Even a reliable file transfer application does not really care
in what order the chunks of file data are delivered, provided it is eventually satis-
fied that all chunks are delivered without errors and can be reassembled back into
the original order.

As an alternative to the overhead of reliable, in-order delivery implemented
within the network, a different type of service called best-effort delivery was
adopted by Frame Relay and the Internet Protocol. With best-effort delivery, the
network does not expend much effort to ensure that data is delivered without
errors or gaps. Certain types of errors are usually detected using error-detecting
codes or checksums, such as those that might affect where a datagram is directed,
but when such errors are detected, the errant datagram is merely discarded with-
out further action.

If best-effort delivery is successful, a fast sender can produce information at
a rate that exceeds the receiver’s ability to consume it. In best-effort IP networks,
slowing down a sender is achieved by flow control mechanisms that operate out-
side the network and at higher levels of the communication system. In particular,
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TCP handles this type of problem, and we shall discuss it in detail in Chapters 15
and 16. This is consistent with the end-to-end argument: TCP, which resides at the
end hosts, handles rate control. It is also consistent with fate sharing: the approach
allows some elements of the network infrastructure to fail without necessarily
affecting the ability of the devices outside the network to communicate (as long as
some communication path continues to operate).

Design and Implementation

Although a protocol architecture may suggest a certain approach to implemen-
tation, it usually does not include a mandate. Consequently, we make a distinc-
tion between the protocol architecture and the implementation architecture, which
defines how the concepts in a protocol architecture may be rendered into exis-
tence, usually in the form of software.

Many of the individuals responsible for implementing the protocols for the
ARPANET were familiar with the software structuring of operating systems, and
an influential paper describing the “THE” multiprogramming system [D68] advo-
cated the use of a hierarchical structure as a way to deal with verification of the
logical soundness and correctness of a large software implementation. Ultimately,
this contributed to a design philosophy for networking protocols involving mul-
tiple layers of implementation (and design). This approach is now called layering
and is the usual approach to implementing protocol suites.

Layering

With layering, each layer is responsible for a different facet of the communica-
tions. Layers are beneficial because a layered design allows developers to evolve
different portions of the system separately, often by different people with some-
what different areas of expertise. The most frequently mentioned concept of pro-
tocol layering is based on a standard called the Open Systems Interconnection (OSI)
model [Z80] as defined by the International Organization for Standardization
(ISO). Figure 1-2 shows the standard OSI layers, including their names, numbers,
and a few examples. The Internet’s layering model is somewhat simpler, as we
shall see in Section 1.3.

Although the OSI model suggests that seven logical layers may be desirable
for modularity of a protocol architecture implementation, the TCP/IP architec-
ture is normally considered to consist of five. There was much debate about the
relative benefits and deficiencies of the OSI model, and the ARPANET model that
preceded it, during the early 1970s. Although it may be fair to say that TCP/IP
ultimately “won,” a number of ideas and even entire protocols from the ISO pro-
tocol suite (protocols standardized by ISO that follow the OSI model) have been
adopted for use with TCP/IP (e.g., IS-IS [RFC3787]).
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Number Name Description/Example
7 Application Specifies methods for accomplishing some user-initiated task. Application-layer protocols tend to
pp be devised and implemented by application developers. Examples include FTP, Skype, etc.
. Specifies methods for expressing data formats and translation rules for applications. A standard
6 Presentation example would be conversion of EBCDIC to ASCII coding for characters (but of little concern
o today). Encryption is sometimes associated with this layer but can also be found at other layers.
[%]
o
T . Specifies methods for multiple connections constituting a communication session. These may
5 Session include closing connections, restarting connections, and checkpointing progress. ISO X.225 is a
session-layer protocol.
Specifies methods for connections or associations between multiple programs running on the
4 Transport same computer system. This layer may also implement reliable delivery if not implemented
elsewhere (e.g., Internet TCP, ISO TP4).
Network or Specifies methods for communicating in a multihop fashion across potentially different types of
3 3 link networks. For packet networks, describes an abstract packet format and its standard
< Internetwork addressing structure (.g., IP datagram, X.25 PLP, ISO CLNP).
]
o
o ) Specifies methods for communication across a single link, including “media access” control
g 2 L|nk protocols when multiple systems share the same media. Error detection is commonly included at
g this layer, along with link-layer address formats (e.g., Ethernet, Wi-Fi, ISO 13239/HDLC).
°
E X Specifies connectors, data rates, and how bits are encoded on some media. Also describes low-
< 1 PhyS|Ca| level error detection and correction, plus frequency assignments. We mostly stay clear of this
layer in this text. Examples include V.92, Ethernet 1000BASE-T, SONET/SDH.

Figure 1-2 The standard seven-layer OSI model as specified by the ISO. Not all protocols are implemented by
every networked device (at least in theory). The OSI terminology and layer numbers are widely
used.

As described briefly in Figure 1-2, each layer has a different responsibility.
From the bottom up, the physical layer defines methods for moving digital infor-
mation across a communication medium such as a phone line or fiber-optic cable.
Portions of the Ethernet and Wireless LAN (Wi-Fi) standards are here, although
we do not delve into this layer very much in this text. The link or data-link layer
includes those protocols and methods for establishing connectivity to a neighbor
sharing the same medium. Some link-layer networks (e.g., DSL) connect only two
neighbors. When more than one neighbor can access the same shared network, the
network is said to be a multi-access network. Wi-Fi and Ethernet are examples of
such multi-access link-layer networks, and specific protocols are used to mediate
which stations have access to the shared medium at any given time. We discuss
these in Chapter 3.

Moving up the layer stack, the network or internetwork layer is of great interest
to us. For packet networks such as TCP/IP, it provides an interoperable packet for-
mat that can use different types of link-layer networks for connectivity. The layer
also includes an addressing scheme for hosts and routing algorithms that choose
where packets go when sent from one machine to another. Above layer 3 we find
protocols that are (at least in theory) implemented only by end hosts, including
the transport layer. Also of great interest to us, it provides a flow of data between
sessions and can be quite complex, depending on the types of services it provides
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(e.g., reliable delivery on a packet network that might drop data). Sessions rep-
resent ongoing interactions between applications (e.g., when “cookies” are used
with a Web browser during a Web login session), and session-layer protocols may
provide capabilities such as connection initiation and restart, plus checkpointing
(saving work that has been accomplished so far). Above the session layer we find
the presentation layer, which is responsible for format conversions and standard
encodings for information. As we shall see, the Internet protocols do not include a
formal session or presentation protocol layer, so these functions are implemented
by applications if needed.

The top layer is the application layer. Applications usually implement their
own application-layer protocols, and these are the ones most visible to users.
There is a wide variety of application-layer protocols, and programmers are con-
stantly inventing new ones. Consequently, the application layer is where there is
the greatest amount of innovation and where new capabilities are developed and
deployed.

Multiplexing, Demultiplexing, and Encapsulation in Layered
Implementations

One of the major benefits of a layered architecture is its natural ability to perform
protocol multiplexing. This form of multiplexing allows multiple different protocols
to coexist on the same infrastructure. It also allows multiple instantiations of the
same protocol object (e.g., connections) to be used simultaneously without being
confused.

Multiplexing can occur at different layers, and at each layer a different sort of
identifier is used for determining which protocol or stream of information belongs
together. For example, at the link layer, most link technologies (such as Ethernet
and Wi-Fi) include a protocol identifier field value in each packet to indicate which
protocol is being carried in the link-layer frame (IP is one such protocol). When
an object (packet, message, etc.), called a protocol data unit (PDU), at one layer is
carried by a lower layer, it is said to be encapsulated (as opaque data) by the next
layer down. Thus, multiple objects at layer N can be multiplexed together using
encapsulation in layer N - 1. Figure 1-3 shows how this works. The identifier at
layer N -1 is used to determine the correct receiving protocol or program at layer
N during demultiplexing.

In Figure 1-3, each layer has its own concept of a message object (a PDU) corre-
sponding to the particular layer responsible for creating it. For example, if a layer
4 (transport) protocol produces a packet, it would properly be called a layer 4 PDU
or transport PDU (TPDU). When a layer is provided a PDU from the layer above it,
it usually “promises” to not look into the contents of the PDU. This is the essence
of encapsulation—each layer treats the data from above as opaque, uninterpre-
table information. Most commonly a layer prepends the PDU with its own header,
although trailers are used by some protocols (not TCP/IP). The header is used for
multiplexing data when sending, and for the receiver to perform demultiplexing,
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Layer Number Encapsulated Object
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:
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N-2 Layer N -2 PDU from Layer N - 1
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B — Front of PDU

Figure 1-3 Encapsulation is usually used in conjunction with layering. Pure encapsulation involves
taking the PDU of one layer and treating it as opaque (uninterpreted) data at the layer
below. Encapsulation takes place at each sender, and decapsulation (the reverse opera-
tion) takes place at each receiver. Most protocols use headers during encapsulation; a few
also use trailers.

based on a demultiplexing (demux) identifier. In TCP/IP networks such identifiers
are commonly hardware addresses, IP addresses, and port numbers. The header
may also include important state information, such as whether a virtual circuit is
being set up or has already completed setup. The resulting object is another PDU.

One other important feature of layering suggested by Figure 1-2 is that in pure
layering not all networked devices need to implement all the layers. Figure 1-4
shows that in some cases a device needs to implement only a few layers if it is
expected to perform only certain types of processing.

In Figure 1-4, a somewhat idealized small internet includes two end systems, a
switch, and a router. In this figure, each number corresponds to a type of protocol
at a particular layer. As we can see, each device implements a different subset of
the layer stack. The host on the left implements three different link-layer protocols
(D, E, and F) with corresponding physical layers and three different transport-
layer protocols (A, B, and C) that run on a single type of network-layer protocol.
End hosts implement all the layers, switches implement up to layer 2 (this switch
implements D and G), and routers implement up to layer 3. Routers are capable
of interconnecting different types of link-layer networks and must implement the
link-layer protocols for each of the network types they interconnect.
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Figure 1-4 Different network devices implement different subsets of the protocol stack. End hosts tend to

implement all the layers. Routers implement layers below the transport layer, and switches imple-
ment link-layer protocols and below. This idealized structure is often violated because routers and
switches usually include the ability to act as a host (e.g., to be managed and set up) and therefore
need an implementation of all of the layers even if they are rarely used.

The internet of Figure 1-4 is somewhat idealized because today’s switches and
routers often implement more than the protocols they are absolutely required to
implement for forwarding data. This is for a number of reasons, including man-
agement. In such circumstances, devices such as routers and switches must some-
times act as hosts and support services such as remote login. To do this, they
usually must implement transport and application protocols.

Although we show only two hosts communicating, the link- and physical-
layer networks (labeled as D and G) might have multiple hosts attached. If so,
then communication is possible between any pair of systems that implement the
appropriate higher-layer protocols. In Figure 1-4 we can differentiate between an
end system (the two hosts on either side) and an intermediate system (the router in
the middle) for a particular protocol suite. Layers above the network layer use end-
to-end protocols. In our picture these layers are needed only on the end systems.
The network layer, however, provides a hop-by-hop protocol and is used on the two
end systems and every intermediate system. The switch or bridge is not ordinarily
considered an intermediate system because it is not addressed using the internet-
working protocol’s addressing format, and it operates in a fashion that is largely
transparent to the network-layer protocol. From the point of view of the routers
and end systems, the switch or bridge is essentially invisible.

A router, by definition, has two or more network interfaces (because it con-
nects two or more networks). Any system with multiple interfaces is called multi-
homed. A host can also be multihomed, but unless it specifically forwards packets
from one interface to another, it is not called a router. Also, routers need not be
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special hardware boxes that only move packets around an internet. Most TCP/IP
implementations, for example, allow a multihomed host to act as a router also,
if properly configured to do so. In this case we can call the system either a host
(when an application such as File Transfer Protocol (FTP) [RFC0959] or the Web is
used) or a router (when it is forwarding packets from one network to another). We
will use whichever term makes sense given the context.

One of the goals of an internet is to hide all of the details of the physical lay-
out (the topology) and lower-layer protocol heterogeneity from the applications.
Although this is not obvious from our two-network internet in Figure 1-4, the
application layers should not care (and do not care) that even though each host
is attached to a network using link-layer protocol D (e.g., Ethernet), the hosts are
separated by a router and switch that use link-layer G. There could be 20 rout-
ers between the hosts, with additional types of physical interconnections, and the
applications would run without modification (although the performance might be
somewhat different). Abstracting the details in this way is what makes the con-
cept of an internet so powerful and useful.

The Architecture and Protocols of the TCP/IP Suite

So far we have discussed architecture, protocols, protocol suites, and implemen-
tation techniques in the abstract. In this section, we discuss the architecture and
particular protocols that constitute the TCP/IP suite. Although this has become the
established term for the protocols used on the Internet, there are many protocols
beyond TCP and IP in the collection or family of protocols used with the Inter-
net. We begin by noting how the ARPANET reference model of layering, which
ultimately formed the basis for the Internet’s protocol layering, differs somewhat
from the OSI layering discussed earlier.

The ARPANET Reference Model

Figure 1-5 depicts the layering inspired by the ARPANET reference model, which
was ultimately adopted by the TCP/IP suite. The structure is simpler than the OSI
model, but real implementations include a few specialized protocols that do not fit
cleanly into the conventional layers.

Starting from the bottom of Figure 1-5 and working our way up the stack,
the first layer we see is 2.5, an “unofficial” layer. There are several protocols that
operate here, but one of the oldest and most important is called the Address Reso-
lution Protocol (ARP). It is a specialized protocol used with IPv4 and only with
multi-access link-layer protocols (such as Ethernet and Wi-Fi) to convert between
the addresses used by the IP layer and the addresses used by the link layer. We
examine this protocol in Chapter 4. In IPv6 the address-mapping function is part
of ICMPv6, which we discuss in Chapter 8.
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Number Name Description / Example
. f Virtually any Internet-compatible application, including the Web
° 7 Application (HTTP), DNS (Chapter 11), DHCP (Chapter 6).
Provides exchange of data between abstract “ports” managed by
4 Transport applications. May include error and flow control. Examples: TCP
(Chapters 13-17), UDP (Chapter 10), SCTP, DCCP.
Network Unofficial “layer” that helps accomplish setup, management, and
®» 3.5 . security for the network layer. Examples: ICMP (Chapter 8) and
] (Adjunct) IGMP (Chapter 9), IPsec (Chapter 18). .
2 Network
D . - - Layer”
(=] Defines abstract datagrams and provides routing. Examples
D 3 Network include IP (32-bit addresses, 64KB maximum size) and IPv6
g (128-bit addresses, up to 4GB maximum size). Chapters 2,5.
<
<=( Link Unofficial “layer” used to map addresses used at the network to
2.5 . those used at the link layer on multi-access link-layer networks. “Driver”
(AdenCt) Example: ARP (Chapter 4).

Figure 1-5 Protocol layering based on the ARM or TCP/IP suite used in the Internet. There are no official ses-

sion or presentation layers. In addition, there are several “adjunct” or helper protocols that do not
fit well into the standard layers yet perform critical functions for the operation of the other proto-
cols. Some of these protocols are not used with IPv6 (e.g., IGMP and ARP).

At layer number 3 in Figure 1-5 we find IP, the main network-layer protocol
for the TCP/IP suite. We discuss it in detail in Chapter 5. The PDU that IP sends to
link-layer protocols is called an IP datagram and may be as large as 64KB (and up
to 4GB for IPv6). In many cases we shall use the simpler term packet to mean an
IP datagram when the usage context is clear. Fitting large packets into link-layer
PDUs (called frames) that may be smaller is handled by a function called fragmenta-
tion that may be performed by IP hosts and some routers when necessary. In frag-
mentation, portions of a larger datagram are sent in multiple smaller datagrams
called fragments and put back together (called reassembly) when reaching the des-
tination. We discuss fragmentation in Chapter 10.

Throughout the text we shall use the term IP to refer to both IP versions 4 and
6. We use the term IPv6 to refer to IP version 6, and IPv4 to refer to IP version 4,
currently the most popular version. When discussing architecture, the details of
IPv4 versus IPv6 matter little. When we delve into the way particular addressing
and configuration functions work (Chapter 2 and Chapter 6), for example, these
details will become more important.

Because IP packets are datagrams, each one contains the address of the layer
3 sender and recipient. These addresses are called IP addresses and are 32 bits long
for IPv4 and 128 bits long for IPv6; we discuss them in detail in Chapter 2. This
difference in IP address size is the characteristic that most differentiates IPv4 from
IPv6. The destination address of each datagram is used to determine where each
datagram should be sent, and the process of making this determination and send-
ing the datagram to its next hop is called forwarding. Both routers and hosts per-
form forwarding, although routers tend to do it much more often. There are three
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types of IP addresses, and the type affects how forwarding is performed: unicast
(destined for a single host), broadcast (destined for all hosts on a given network),
and multicast (destined for a set of hosts that belong to a multicast group). Chapter
2 looks at the types of addresses used with IP in more detail.

The Internet Control Message Protocol (ICMP) is an adjunct to IP, and we label
it as a layer 3.5 protocol. It is used by the IP layer to exchange error messages and
other vital information with the IP layer in another host or router. There are two
versions of ICMP: ICMPv4, used with IPv4, and ICMPv6, used with IPv6. ICMPv6
is considerably more complex and includes functions such as address autocon-
figuration and Neighbor Discovery that are handled by other protocols (e.g., ARP)
on IPv4 networks. Although ICMP is used primarily by IP, it is also possible for
applications to use it. Indeed, we will see that two popular diagnostic tools, ping
and traceroute, use ICMP. ICMP messages are encapsulated within IP data-
grams in the same way transport layer PDUs are.

The Internet Group Management Protocol (IGMP) is another protocol adjunct to
IPv4. It is used with multicast addressing and delivery to manage which hosts are
members of a multicast group (a group of receivers interested in receiving traffic for
a particular multicast destination address). We describe the general properties of
broadcasting and multicasting, along with IGMP and the Multicast Listener Discov-
ery protocol (MLD, used with IPv6), in Chapter 9.

At layer 4, the two most common Internet transport protocols are vastly dif-
ferent. The most widely used, the Transmission Control Protocol (TCP), deals with
problems such as packet loss, duplication, and reordering that are not repaired
by the IP layer. It operates in a connection-oriented (VC) fashion and does not
preserve message boundaries. Conversely, the User Datagram Protocol (UDP) pro-
vides little more than the features provided by IP. UDP allows applications to send
datagrams that preserve message boundaries but imposes no rate control or error
control.

TCP provides a reliable flow of data between two hosts. It is concerned with
things such as dividing the data passed to it from the application into appropri-
ately sized chunks for the network layer below, acknowledging received packets,
and setting timeouts to make certain the other end acknowledges packets that
are sent, and because this reliable flow of data is provided by the transport layer,
the application layer can ignore all these details. The PDU that TCP sends to IP is
called a TCP segment.

UDP, on the other hand, provides a much simpler service to the application
layer. It allows datagrams to be sent from one host to another, but there is no
guarantee that the datagrams reach the other end. Any desired reliability must
be added by the application layer. Indeed, about all that UDP provides is a set
of port numbers for multiplexing and demultiplexing data, plus a data integrity
checksum. As we can see, UDP and TCP differ radically even though they are at
the same layer. There is a use for each type of transport protocol, which we will
see when we look at the different applications that use TCP and UDP.
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There are two additional transport-layer protocols that are relatively new
and available on some systems. As they are not yet very widespread, we do not
devote much discussion to them, but they are worth being aware of. The first is the
Datagram Congestion Control Protocol (DCCP), specified in [RFC4340]. It provides a
type of service midway between TCP and UDP: connection-oriented exchange of
unreliable datagrams but with congestion control. Congestion control comprises
a number of techniques whereby a sender is limited to a sending rate in order to
avoid overwhelming the network. We discuss it in detail with respect to TCP in
Chapter 16.

The other transport protocol available on some systems is called the Stream
Control Transmission Protocol (SCTP), specified in [RFC4960]. SCTP provides reli-
able delivery like TCP but does not require the sequencing of data to be strictly
maintained. It also allows for multiple streams to logically be carried on the same
connection and provides a message abstraction, which differs from TCP. SCTP
was designed for carrying signaling messages on IP networks that resemble those
used in the telephone network.

Above the transport layer, the application layer handles the details of the par-
ticular application. There are many common applications that almost every imple-
mentation of TCP/IP provides. The application layer is concerned with the details
of the application and not with the movement of data across the network. The
lower three layers are the opposite: they know nothing about the application but
handle all the communication details.

Multiplexing, Demultiplexing, and Encapsulation in TCP/IP

We have already discussed the basics of protocol multiplexing, demultiplexing,
and encapsulation. At each layer there is an identifier that allows a receiving sys-
tem to determine which protocol or data stream belongs together. Usually there is
also addressing information at each layer. This information is used to ensure that
a PDU has been delivered to the right place. Figure 1-6 shows how demultiplexing
works in a hypothetical Internet host.

Although it is not really part of the TCP/IP suite, we shall begin bottom-up
and mention how demultiplexing from the link layer is performed, using Ethernet
as an example. We discuss several link-layer protocols in Chapter 3. An arriving
Ethernet frame contains a 48-bit destination address (also called a link-layer or
MAC—Media Access Control—address) and a 16-bit field called the Ethernet type.
A value of 0x0800 (hexadecimal) indicates that the frame contains an IPv4 data-
gram. Values of 0x0806 and 0x86DD indicate ARP and IPv6, respectively. Assum-
ing that the destination address matches one of the receiving system’s addresses,
the frame is received and checked for errors, and the Ethernet Type field value is
used to select which network-layer protocol should process it.

Assuming that the received frame contains an IP datagram, the Ethernet
header and trailer information is removed, and the remaining bytes (which con-
stitute the frame’s payload) are given to IP for processing. IP checks a number of
items, including the destination IP address in the datagram. If the destination
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Figure 1-6 The TCP/IP stack uses a combination of addressing information and protocol demul-
tiplexing identifiers to determine if a datagram has been received correctly and, if so,
what entity should process it. Several layers also check numeric values (e.g., checksums)
to ensure that the contents have not been damaged in transit.

address matches one of its own and the datagram contains no errors in its header
(IP does not check its payload), the 8-bit IPv4 Protocol field (called Next Header
in IPv6) is checked to determine which protocol to invoke next. Common values
include 1 (ICMP), 2 (IGMP), 4 (IPv4), 6 (TCP), and 17 (UDP). The value of 4 (and
41, which indicates IPv6) is interesting because it indicates the possibility that an
IP datagram may appear inside the payload area of an IP datagram. This violates
the original concepts of layering and encapsulation but is the basis for a powerful
technique known as tunneling, which we discuss more in Chapter 3.

Once the network layer (IPv4 or IPv6) determines that the incoming datagram
is valid and the correct transport protocol has been determined, the resulting data-
gram (reassembled from fragments if necessary) is passed to the transport layer
for processing. At the transport layer, most protocols (including TCP and UDP)
use port numbers for demultiplexing to the appropriate receiving application.

Port Numbers

Port numbers are 16-bit nonnegative integers (i.e., range 0-65535). These numbers
are abstract and do not refer to anything physical. Instead, each IP address has
65,536 associated port numbers for each transport protocol that uses port numbers
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(most do), and they are used for determining the correct receiving application. For
client/server applications (see Section 1.5.1), a server first “binds” to a port num-
ber, and subsequently one or more clients establish connections to the port num-
ber using a particular transport protocol on a particular machine. In this sense,
port numbers act more like telephone number extensions, except they are usually
assigned by standards.

Standard port numbers are assigned by the Internet Assigned Numbers
Authority (IANA). The set of numbers is divided into special ranges, including the
well-known port numbers (0-1023), the registered port numbers (1024-49151), and
the dynamic/private port numbers (49152-65535). Traditionally, servers wishing to
bind to (i.e., offer service on) a well-known port require special privileges such as
administrator or “root” access.

The range of well-known ports is used for identifying many well-known ser-
vices such as the Secure Shell Protocol (SSH, port 22), FTP (ports 20 and 21), Telnet
remote terminal protocol (port 23), e-mail/Simple Mail Transfer Protocol (SMTP,
port 25), Domain Name System (DNS, port 53), the Hypertext Transfer Protocol or Web
(HTTP and HTTPS, ports 80 and 443), Interactive Mail Access Protocol IMAP and
IMAPS, ports 143 and 993), Simple Network Management Protocol (SNMP, ports 161
and 162), Lightweight Directory Access Protocol (LDAP, port 389), and several others.
Protocols with multiple ports (e.g., HTTP and HTTPS) often have different port
numbers depending on whether Transport Layer Security (TLS) is being used with
the base application-layer protocol (see Chapter 18).

Note

If we examine the port numbers for these standard services and other standard
TCP/IP services (Telnet, FTP, SMTP, etc.), we see that most are odd numbers.
This is historical, as these port numbers are derived from the NCP port numbers.
(NCP, the Network Control Protocol, preceded TCP as a transport-layer protocol
for the ARPANET.) NCP was simplex, not full duplex, so each application required
two connections, and an even-odd pair of port numbers was reserved for each
application. When TCP and UDP became the standard transport layers, only a
single port number was needed per application, yet the odd port numbers from
NCP were used.

The registered port numbers are available to clients or servers with special
privileges, but IANA keeps a reserved registry for particular uses, so these port
numbers should generally be avoided when developing new applications unless
an IANA allocation has been procured. The dynamic/private port numbers are
essentially unregulated. As we will see, in some circumstances (e.g., on clients)
the value of the port number matters little because the port number being used
is transient. Such port numbers are also called ephemeral port numbers. They are
considered to be temporary because a client typically needs one only as long as the
user running the client needs service, and the client does not need to be found by
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the server in order to establish a connection. Servers, conversely, generally require
names and port numbers that do not change often in order to be found by clients.

Names, Addresses, and the DNS

With TCP/IP, each link-layer interface on each computer (including routers) has
at least one IP address. IP addresses are enough to identify a host, but they are
not very convenient for humans to remember or manipulate (especially the long
addresses used with IPv6). In the TCP/IP world, the DNS is a distributed database
that provides the mapping between host names and IP addresses (and vice versa).
Names are set up in a hierarchy, ending in domains such as .com, .org, .gov, .in,
.uk, and .edu. Perhaps surprisingly, DNS is an application-layer protocol and
thus depends on the other protocols in order to operate. Although most of the
TCP/IP suite does not use or care about names, typical users (e.g., those using Web
browsers) use names frequently, so if the DNS fails to function properly, normal
Internet access is effectively disabled. Chapter 11 looks into the DNS in detail.
Applications that manipulate names can call a standard API function (see
Section 1.5.3) to look up the IP address (or addresses) corresponding to a given
host’s name. Similarly, a function is provided to do the reverse lookup—given an
IP address, look up the corresponding host name. Most applications that take a host
name as input also take an IP address. Web browsers support this capability. For
example, the Uniform Resource Locators (URLs) http://131.243.2.201/index.
html and http://[2001:400:610:102::c9]/index.html can be typed into a Web
browser and are both effectively equivalent tohttp://ee.1bl.gov/index.html (at
the time of writing; the second example requires IPv6 connectivity to be successful).

Internets, Intranets, and Extranets

As suggested previously, the Internet has developed as the aggregate network
resulting from the interconnection of constituent networks over time. The lower-
case internet means multiple networks connected together, using a common proto-
col suite. The uppercase Internet refers to the collection of hosts around the world
that can communicate with each other using TCP/IP. The Internet is an internet,
but the reverse is not true.

One of the reasons for the phenomenal growth in networking during the
1980s was the realization that isolated groups of stand-alone computers made
little sense. A few stand-alone systems were connected together into a network.
Although this was a step forward, during the 1990s we realized that separate
networks that could not interoperate were not as valuable as a bigger network
that could. This notion is the basis for the so-called Metcalfe’s Law, which states
roughly that the value of a computer network is proportional to the square of the
number of connected endpoints (e.g., users or devices). The Internet idea, and its
supporting protocols, would make possible the interconnection of different net-
works. This deceptively simple concept turns out to be remarkably powerful.
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The easiest way to build an internet is to connect two or more networks with
a router. A router is often a special-purpose device for connecting networks. The
nice thing about routers is that they provide connections to many different types
of physical networks: Ethernet, Wi-Fi, point-to-point links, DSL, cable Internet ser-
vice, and so on.

Note

These devices are also called /P routers, but we will use the term router. Historically
these devices were called gateways, and this term is used throughout much of the
older TCP/IP literature. Today the term gateway is used for an application-layer
gateway (ALG), a process that connects two different protocol suites (say, TCP/IP
and IBM’s SNA) for one particular application (often electronic mail or file transfer).

In recent years, other terms have been adopted for different configurations of
internets using the TCP/IP protocol suite. An intranet is the term used to describe a
private internetwork, usually run by a business or other enterprise. Most often, the
intranet provides access to resources available only to members of the particular
enterprise. Users may connect to their (e.g., corporate) intranet using a virtual private
network (VPN). VPN help to ensure that access to potentially sensitive resources in
an intranet is made available only to authorized users, usually using the tunneling
concept we mentioned previously. We discuss VPNs in more detail in Chapter 7.

In many cases an enterprise or business wishes to set up a network containing
servers accessible to certain partners or other associates using the Internet. Such
networks, which also often involve the use of a VPN, are known as extranets and
consist of computers attached outside the serving enterprise’s firewall (see Chap-
ter 7). Technically, there is little difference between an intranet, an extranet, and
the Internet, but the usage cases and administrative policies are usually different,
and therefore a number of these more specific terms have evolved.

Designing Applications

The network concepts we have touched upon so far provide a fairly simple service
model [RFC6250]: moving bytes between programs running on different (or, occa-
sionally, the same) computers. To do anything useful with this capability, we need
networked applications that use the network for providing services or perform-
ing computations. Networked applications are typically structured according to a
small number of design patterns. The most common of these are client/server and
peer-to-peer.

Client/Server

Most network applications are designed so that one side is the client and the other
side is the server. The server provides some type of service to clients, such as
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access to files on the server host. We can categorize servers into two classes: itera-
tive and concurrent. An iterative server iterates through the following steps:

I1. Wait for a client request to arrive.

I2. Process the client request.

I3. Send the response back to the client that sent the request.
14. Go back to step I1.

The problem with an iterative server occurs when step 12 takes a long time.
During this time no other clients are serviced. A concurrent server, on the other
hand, performs the following steps:

C1. Wait for a client request to arrive.

C2. Start a new server instance to handle this client’s request. This may involve
creating a new process, task, or thread, depending on what the underly-
ing operating system supports. This new server handles one client’s entire
request. When the requested task is complete, the new server terminates.
Meanwhile, the original server instance continues to C3.

C3. Go back to step C1.

The advantage of a concurrent server is that the server just spawns other
server instances to handle the client requests. Each client has, in essence, its own
server. Assuming that the operating system allows multiprogramming (essen-
tially all do today), multiple clients are serviced concurrently. The reason we cat-
egorize servers, and not clients, is that a client normally cannot tell whether it is
talking to an iterative server or a concurrent server. As a general rule, most servers
are concurrent.

Note that we use the terms client and server to refer to applications and not
to the particular computer systems on which they run. The very same terms are
sometimes used to refer to the pieces of hardware that are most often used to exe-
cute either client or server applications. Although the terminology is thus some-
what imprecise, it works well enough in practice. As a result, it is common to find
a server (in the hardware sense) running more than one server (in the application
sense).

Peer-to-Peer

Some applications are designed in a more distributed fashion where there is no
single server. Instead, each application acts both as a client and as a server, some-
times as both at once, and is capable of forwarding requests. Some very popular
applications (e.g., Skype [SKYPE], BitTorrent [BT]) are of this form. These applica-
tions are called peer-to-peer or p2p applications. A concurrent p2p application may
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receive an incoming request, determine if it is able to respond to the request, and
if not forward the request on to some other peer. Thus, the set of p2p applications
together form a network among applications, also called an overlay network. Such
overlays are now commonplace and can be extremely powerful. Skype, for exam-
ple, has grown to be the largest carrier of international telephone calls. According
to some estimates, BitTorrent was responsible for more than half of all Internet
traffic in 2009 [IPIS].

One of the primary problems in p2p networks is called the discovery problem.
That is, how does one peer find which other peer(s) can provide the data or service
it wants in a network where peers may come and go? This is usually handled by
a bootstrapping procedure whereby each client is initially configured with the
addresses and port numbers of some peers that are likely to be operating. Once
connected, the new participant learns of other active peers and, depending on the
protocol, what services or files they provide.

Application Programming Interfaces (APIs)

Applications, whether p2p or client/server, need to express their desired network
operations (e.g., make a connection, write or read data). This is usually supported
by a host operating system using a networking application programming interface
(API). The most popular APl is called sockets or Berkeley sockets, indicating where it
was originally developed [LJFK93].

This text is not a programming text, but occasionally we refer to a feature of
TCP/IP and whether that feature is provided by the sockets API or not. All of the
programming details with examples for sockets can be found in [SFR04]. Modi-
fications to sockets intended for use with IPv6 are also described in a number
of freely available online documents [RFC3493][RFC3542][RFC3678][RFC4584]
[RFC5014].

Standardization Process

Newcomers to the TCP/IP suite often wonder just who is responsible for specify-
ing and standardizing the various protocols and how they operate. A number
of organizations represent the answer to this question. The group with which
we will most often be concerned is the Internet Engineering Task Force (IETF)
[RFC4677]. This group meets three times each year in various locations around
the world to develop, discuss, and agree on standards for the Internet’s “core”
protocols. Exactly what constitutes “core” is subject to some debate, but common
protocols such as IPv4, IPv6, TCP, UDP, and DNS are clearly in the purview of
IETE. Attendance at IETF meetings is open to anyone, but it is not free.

IETF is a forum that elects leadership groups called the Internet Architec-
ture Board (IAB) and the Internet Engineering Steering Group (IESG). The IAB is
chartered to provide architectural guidance to activities in IETF and to perform a
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number of other tasks such as appointing liaisons to other standards-defining orga-
nizations (SDOs). The IESG has decision-making authority regarding the creation
and approval of new standards, along with modifications to existing standards.
The “heavy lifting” or detailed work is generally performed by IETF working
groups that are coordinated by working group chairs who volunteer for this task.

In addition to the IETF, there are two other important groups that interact
closely with the IETF. The Internet Research Task Force (IRTF) explores protocols,
architectures, and procedures that are not deemed mature enough for standard-
ization. The chair of the IRTF is a nonvoting member of IAB. The IAB, in turn,
works with the Internet Society (ISOC) to help influence and promote worldwide
policies and education regarding Internet technologies and usage.

Request for Comments (RFC)

Every official standard in the Internet community is published as a Request for
Comments, or RFC. RFCs can be created in a number of ways, and the publisher of
RFCs (called the RFC editor) recognizes multiple document streams corresponding
to the way an RFC has been developed. The current streams (as of 2010) include
the IETE IAB, IRTF, and independent submission streams. Prior to being accepted
and published (permanently) as an RFC, documents exist as temporary Internet
drafts while they receive comments and progress through the editing and review
process.

All RFCs are not standards. Only so-called standards-track category RFCs
are considered to be official standards. Other categories include best current prac-
tice (BCP), informational, experimental, and historic. It is important to realize that
just because a document is an RFC does not mean that the IETF has endorsed it
as any form of standard. Indeed, there exist RFCs on which there is significant
disagreement.

The RFCs range in size from a few pages to several hundred. Each is identi-
fied by a number, such as RFC 1122, with higher numbers for newer RFCs. They
are all available for free from a number of Web sites, including http://www.rfc
editor.org. For historical reasons, RFCs are generally delivered as basic text files,
although some RFCs have been reformatted or authored using more advanced file
formats.

A number of RFCs have special significance because they summarize, clarify,
or interpret particular sets of other standards. For example, [REC5000] defines
the set of all other RFCs that are considered official standards as of mid-2008 (the
most recent such RFC at the time of writing). An updated list is available at the
current standards Web site [OIPSW]. The Host Requirements RFCs ([RFC1122] and
[RFC1123]) define requirements for protocol implementations in Internet IPv4
hosts, and the Router Requirements RFC [RFC1812] does the same for routers. The
Node Requirements REC [RFC4294] does both for IPv6 systems.
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Other Standards

Although the IETF is responsible for standardizing most of the protocols we dis-
cuss in this text, other SDOs are responsible for defining protocols that merit our
attention. The most important of these groups include the Institute of Electrical
and Electronics Engineers (IEEE), the World Wide Web Consortium (W3C), and
the International Telecommunication Union (ITU). In their activities relevant to
this text, IEEE is concerned with standards below layer 3 (e.g., Wi-Fi and Ethernet),
and W3C is concerned with application-layer protocols, specifically those related
to Web technologies (e.g., HTML-based syntax). ITU, and more specifically ITU-T
(formerly CCITT), standardizes protocols used within the telephone and cellular
networks, which is becoming an ever more important component of the Internet.

Implementations and Software Distributions

The historical de facto standard TCP/IP implementations were from the Computer
Systems Research Group (CSRG) at the University of California, Berkeley. They
were distributed with the 4.x BSD (Berkeley Software Distribution) system and
with the BSD Networking Releases until the mid-1990s. This source code has been
the starting point for many other implementations. Today, each popular operating
system has its own implementation. In this text, we tend to draw examples from
the TCP/IP implementations in Linux, Windows, and sometimes FreeBSD and
Mac OS (both of which are derived from historical BSD releases). In most cases,
the particular implementation matters little.

Figure 1-7 shows a chronology of the various BSD releases, indicating the
important TCP/IP features we cover in later chapters. It also shows the years when
Linux and Windows began supporting TCP/IP. The BSD Networking Releases
shown in the second column were freely available public source code releases con-
taining all of the networking code, both the protocols themselves and many of the
applications and utilities (e.g., the Telnet remote terminal program and FTP file
transfer program).

By the mid-1990s, the Internet and TCP/IP were well established. All subse-
quent popular operating systems support TCP/IP natively. Research and devel-
opment of new TCP/IP features, previously found first in BSD releases, are now
typically found first in Linux releases. Windows has recently implemented a new
TCP/IP stack (starting with Windows Vista) with many new features and native
IPv6 capability. Linux, FreeBSD, and Mac OS X also support IPv6 without setting
any special configuration options.
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Figure 1-7 The history of software releases supporting TCP/IP up to 1995. The various BSD releases pioneered
the availability of TCP/IP. In part because of legal uncertainties regarding the BSD releases in the
early 1990s, Linux was developed as an alternative that was initially tailored for PC users. Micro-
soft began supporting TCP/IP in Windows a couple of years later.

1.8 Attacks Involving the Internet Architecture

Throughout the text we shall briefly describe attacks and vulnerabilities that
have been discovered in the design or implementation of the topic we are dis-
cussing. Few attacks target the Internet architecture as a whole. However, it is
worth observing that the Internet architecture delivers IP datagrams based on
destination IP addresses. As a result, malicious users are able to insert whatever
IP address they choose into the source IP address field of each IP datagram they
send, an activity called spoofing. The resulting datagrams are delivered to their
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destinations, but it is difficult to perform attribution. That is, it may be difficult or
impossible to determine the origin of a datagram received from the Internet.

Spoofing can be combined with a variety of other attacks seen periodically on
the Internet. Denial-of-service (DoS) attacks usually involve using so much of some
important resource that legitimate users are denied service. For example, sending
so many IP datagrams to a server that it spends all of its time just processing the
incoming packets and performing no other useful work is a type of DoS attack.
Other DoS attacks may involve clogging the network with so much traffic that
no other packets can be sent. This is often accomplished by using many sending
computers, forming a distributed DoS (DDoS) attack.

Unauthorized access attacks involve accessing information or resources in an
unauthorized fashion. This can be accomplished with a variety of techniques such
as exploiting protocol implementation bugs to take control of a system (called
Owning the system and turning it into a zombie or bot). It can also involve vari-
ous forms of masquerading such as an attacker’s agent impersonating a legitimate
user (e.g., by running with the user’s credentials). Some of the more pernicious
attacks involve taking control of many remote systems using malicious software
(malware) and using them in a coordinated, distributed fashion (called botnets).
Programmers who intentionally develop malware and exploit systems for (illegal)
profit or other malicious purposes are generally called black hats. So-called white
hats do the same sorts of technical things but notify vulnerable parties instead of
exploit them.

One other concern with the Internet architecture is that the original Internet
protocols did not perform any encryption in support of authentication, integrity,
or confidentiality. Consequently, malicious users could usually ascertain private
information by merely observing packets in the network. Those with the ability
to modify packets in transit could also impersonate users or alter the contents of
messages. Although these problems have been reduced significantly thanks to
encryption protocols (see Chapter 18), old or poorly designed protocols are still
sometimes used that are vulnerable to simple eavesdropping attacks. Given the
prevalence of wireless networks, where it is relatively easy to “sniff” the packets
sent by others, such older or insecure protocols should be avoided. Note that while
encryption may be enabled at one layer (e.g., on a link-layer Wi-Fi network), only
host-to-host encryption (IP layer or above) protects information across the mul-
tiple network segments an IP datagram is likely to traverse on its way to its final
destination.

Summary

This chapter has been a whirlwind tour of concepts in network architecture and
design in general, plus the TCP/IP protocol suite in particular that we discuss in
detail in later chapters. The Internet architecture was designed to interconnect
different existing networks and provide for a wide range of services and protocols
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operating simultaneously. Packet switching using datagrams was chosen for its
robustness and efficiency. Security and predictable delivery of data (e.g., bounded
latency) were secondary concerns.

Based on their understanding of layered and modular software design in
operating systems, the early implementers of the Internet protocols adopted a
layered design that employs encapsulation. The three main layers in the TCP/IP
protocol suite are the network layer, transport layer, and application layer, and we
mentioned the different responsibilities of each. We also mentioned the link layer
because it relates so closely with the TCP/IP suite. We shall discuss each in more
detail in subsequent chapters.

In TCP/IP, the distinction between the network layer and the transport layer is
critical: the network layer (IP) provides an unreliable datagram service and must
be implemented by all systems addressable on the Internet, whereas the transport
layers (TCP and UDP) provide an end-to-end service to applications running on
end hosts. The primary transport layers differ radically. TCP provides in-ordered
reliable stream delivery with flow control and congestion control. UDP provides
essentially no capabilities beyond IP except port numbers for demultiplexing and
an error detection mechanism. Unlike TCP, however, it supports multicast delivery.

Addresses and demultiplexing identifiers are used by each layer to avoid con-
fusing protocols or different associations/connections of the same protocol. Link-
layer multi-access networks often use 48-bit addresses; IPv4 uses 32-bit addresses
and IPv6 uses 128-bit addresses. The TCP and UDP transport protocols use dis-
tinct sets of port numbers. Some port numbers are assigned by standards, and oth-
ers are used temporarily, usually by client applications when communicating with
servers. Port numbers do not represent anything physical; they are merely used as
a way for applications that want to communicate to rendezvous.

Although port numbers and IP addresses are usually enough to identify the
location of a service on the Internet, they are not very convenient for humans to
remember or use (especially IPv6 addresses). Consequently, the Internet uses
a hierarchical system of host names that can be converted to IP addresses (and
back) using DNS, a distributed database application running on the Internet. DNS
has become an essential component of the Internet infrastructure, and efforts are
under way to make it more secure (see Chapter 18).

An internet is a collection of networks. The common building block for an
internet is a router that connects the networks at the IP layer. The “capital-1” Inter-
net is an internet that spans the globe and interconnects nearly two billion users
(as of 2010). Private internets are called intranets and are usually connected to the
Internet using special devices (firewalls, discussed in Chapter 10) that attempt to
prevent unauthorized access. Extranets usually consist of a subset of an institu-
tion’s intranet that is designed to be accessed by partners or affiliates in a limited
way.

Networked applications are usually designed using a client/server or peer-
to-peer design pattern. Client/server is more popular and traditional, but peer-
to-peer designs have also seen tremendous success. Whatever the design pattern,
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applications invoke APIs to perform networking tasks. The most common API for
TCP/IP networks is called sockets. It was provided with BSD UNIX distributions,
software releases that pioneered the use of TCP/IP. By the late 1990s the TCP/IP
protocol suite and sockets API were available on every popular operating system.

Security was not a major design goal for the Internet architecture. Determin-
ing where packets originate can be difficult for a receiver, as end hosts can easily
spoof source IP addresses in unsecured IP datagrams. Distributed DoS attacks
also remain an ongoing challenge because victim end hosts can be collected
together to form botnets that can carry out DDoS and other attacks, sometimes
without the system owners” knowledge. Finally, early Internet protocols did little
to ensure privacy of sensitive information, but most of those protocols are now
deprecated, and modern replacements use encryption to provide confidential and
authenticated communications between hosts.
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